To request a media interview, please reach out to experts using the faculty directories for each of our six schools, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts is also available to journalists upon request.
Experts in the News
Researchers are exploring how active matter can be harnessed for tasks like designing new materials with tailored properties, understanding the behavior of biological organisms, and even developing new approaches to robotics and autonomous systems. But that’s only possible if scientists learn how the microscopic units making up active matter interact, and whether they can affect these interactions and thereby the collective properties of active matter on the macroscopic scale. School of Physics Professor Roman Grigoriev and his research colleagues have found a potential first step by developing a new model of active matter that generated new insight into the physics of the problem. They detail their methods and results in a new study published in Science Advances, “Physically informed data-driven modeling of active nematics.” Lead author of the study is graduate researcher Matthew Golden. Co-authors are graduate researcher Jyothishraj Nambisan and Alberto Fernandez-Nieves, professor in the Department of Condensed Matter Physics at the University of Barcelona and a former associate professor of Physics at Georgia Tech. (This research was also covered in WorldTimeTodays andCityLife.)
Phys.org September 4, 2023Valerie Montgomery Rice, president and CEO of Morehouse School of Medicine and a Georgia Tech alumna, has received a major honor from the National Medical Association. The organization is giving its 2023 Scroll of Merit Award, its highest honor, to Montgomery Rice. The award recognizes someone who has made significant contributions to medicine, health advocacy or service to the association. Montgomery Rice, who received her bachelor's degree from the School of Chemistry and Biochemistry, is the first woman to lead the private historically Black medical school in Atlanta. (This award was also covered in the Atlanta Tribune.)
Atlanta Journal-Constitution September 2, 2023Santosh Vempala, the Frederick Storey II Chair of Computing and Distinguished Professor in the School of Computer Science, with courtesy appointments in the School of Mathematics and H. Milton Stewart School of Industrial and Systems Engineering, has been named a 2023 Simons Investigator in theoretical computer science by the Simons Foundation. Simons Investigators are outstanding theoretical scientists who receive a stable base of research support from the foundation, enabling them to undertake the long-term study of fundamental questions in mathematics, physics, astrophysics and computer science. Vempala is the second Georgia Tech scientist to be named a Simons Investigator; in 2022, Joshua Weitz, former professor in the School of Biological Sciences, was supported by the Foundation for research in theoretical physics in life sciences.
Simons Foundation August 30, 2023There’s no artist more vibrant, spiritual, or creative than Mother Earth. Then, we have mortals like Georgia Tech School of Physics alumni Dylan Diamond, who execute Mother Earth’s designs into functional tools or, in this case, a timepiece: “Moss Clock.” The clock has its own gear train and servo, or motors. The bottom line: this technology is a clock composed of living moss. Diamond had the idea to make a “digitally inspired” clock where moving panels of different colored moss resemble a classic digital clock display. "My physics degree helped, but I firmly believe that in the age of information, with public access to so many free tutorials and teachers online, anyone can do something like this," Diamond said.
Atlanta Jewish Times August 30, 2023Wetlands serve as a natural protection from storms, fires, and floods. But those protections can be deadly at times. Joel Kostka, professor and Associate Chair of Research in the School of Biological Sciences (with an adjunct appointment in the School of Earth and Atmospheric Sciences), talks about the nation's wetlands in the latest episode of The Earth Unlocked, The Weather Channel's weekly series on the planet's natural wonders and the roles extreme weather, constant geologic change, and biological evolution play. The series airs at 8 p.m. ET Sundays, and can also be viewed on demand on The Weather Channel app (subscription required.)
The Weather Channel August 26, 2023Up to twice the amount of subglacial water that was originally predicted might be draining into the ocean — potentially increasing glacial melt, sea level rise, and biological disturbances. Two School of Earth and Atmospheric Scientist researchers — Alex Robel, assistant professor, and Shi Joyce Sim, research scientist — have collaborated on a new model for how water moves under glaciers. The new theory shows that up to twice the amount of subglacial water that was originally predicted might be draining into the ocean. (The research is also covered at SciTechDaily and Earth.com.)
Phys.org August 21, 2023A team led by members of the Department of Chemistry at King’s College London, in collaboration with scientists from the University of Oklahoma and the Georgia Institute of Technology, have reportedly discovered a new molecular method that could enable more effective and cheaper prevention of bacteria becoming resistant to antibiotics. The School of Chemistry and Biochemistry researchers involved in the study are James Gumbert, professor, and Katie Kuo, Ph.D. scholar.
PharmaPhorum August 16, 2023On a cold March evening in 1964, a colossal earthquake struck off the coast of Alaska. At magnitude 9.2, it was the largest earthquake ever recorded in North America, and it triggered massive tsunamis that killed more than 120 people and leveled communities. But no wave reached Anchorage, the state’s biggest city. Many concluded that nearby geography makes the city immune to tsunamis. A new study published this week by the Alaska Division of Geological and Geophysical Surveys (DGGS), however, finds Anchorage simply got lucky in 1964—and might not the next time an earthquake strikes the seismically active region. Hermann Fritz, professor in the School of Civil and Environmental Engineering, Ocean Science and Engineering, and the School of Earth and Atmospheric Sciences, did not work on the study but is quoted in this article.
Science August 16, 2023Fossils aren’t only useful for learning about the past. They can also suggest how plants and animals might respond to future events — most pressingly, climate change. For example, Jenny McGuire, assistant professor and conservation paleobiologist in the School of Earth and Atmospheric Sciences, and her colleagues studied fossilized pollen grains to see how 16 important plant taxa from North America responded to climate change over the past 18,000 years. Did the plants shift their ranges to follow their preferred climate, the researchers wondered, or did they stay put and make the best of things as the climate changed around them? Twelve of the 16 taxa changed their geographic distribution to maintain similar climate niches, the researchers found — even in periods when the climate was changing rapidly. (This story was first published in Knowable Magazine.)
The Atlantic August 12, 2023The science world is remembering W. Jason Morgan, who in 1967 developed the theory of plate tectonics — a framework that revolutionized the study of earthquakes, volcanoes and the slow, steady shift of the continents across the earth’s mantle. Morgan, who died July 31 at his home in Natick, Mass., attended Georgia Tech and received his B.S. from the School of Physics in 1955.
The New York Times August 11, 2023This summary of new courses, programs, and buildings available for the 2023-2024 school year at Georgia's college campuses includes mention of three new majors in the School of Earth and Atmospheric Sciences: environmental science, atmospheric and ocean sciences, and solid earth and planetary sciences.
Atlanta Journal-Constitution August 9, 2023Researchers have developed a method to construct solid objects that roll down pre-determined paths, which they reckon could have applications in quantum mechanics and medicine. To get a ball of malleable clay to roll down a simple path, you can force it down a specific path once, squashing it as you go. Take it to the top again, restart it from the initial starting point on the ball's surface, and it will roll down the same path. The researchers took this principle to develop an algorithm that could produce a shape capable of following almost any pre-determined path, even making the weird-shaped solids out of 3D-printed plastic and solid ball-bearings (for weight) to prove the point. Elisabetta Matsumoto, assistant professor in the School of Physics, co-wrote an accompanying article to the study saying "future work developing for more precise mathematical understanding of the issue would help to connect this work to applications, as well as to open up more purely mathematical veins of research."
The Register August 9, 2023- ‹ previous
- 23 of 47
- next ›