Experts in the News

To request a media interview, please reach out to experts using the faculty directories for each of our six schools, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts is also available to journalists upon request.

By growing an unusual tentacled microbe in the lab, microbiologists may have taken a big step toward resolving the earliest branches on the tree of life and unraveling one of its great mysteries: how the complex cells that make up the human body — and all plants, animals, and many single-celled organisms — first came to be. Such microbes, called Asgard archaea, have previously been cultured — once — but the advance reported in Nature marks the first time they’ve been grown in high enough concentrations to study their innards in detail. Jennifer Glass, associate professor in the School of Earth and Atmospheric Sciences and a geo-microbiologist, didn't work on the study, but her research in 2020 finding unusual ribosome structures in Asgard microbes helped the scientists published in Nature zero in on what to look for in their specimens.

Strange, tentacled microbe may resemble ancestor of complex life December 22, 2022

By growing an unusual tentacled microbe in the lab, microbiologists may have taken a big step toward resolving the earliest branches on the tree of life and unraveling one of its great mysteries: how the complex cells that make up the human body — and all plants, animals, and many single-celled organisms — first came to be. Such microbes, called Asgard archaea, have previously been cultured — once — but the advance reported in Nature marks the first time they’ve been grown in high enough concentrations to study their innards in detail. Jennifer Glass, associate professor in the School of Earth and Atmospheric Sciences and a geo-microbiologist, didn't work on the study, but her research in 2020 finding unusual ribosome structures in Asgard microbes helped the scientists published in Nature zero in on what to look for in their specimens.

Strange, tentacled microbe may resemble ancestor of complex life December 22, 2022

In this episode of the Talk Nerdy podcast, host Cara Santa Maria is joined by Feryal Özel, professor and chair of the School of Physics. They talk about her incredible career as a theoretical astrophysicist, her important work on the recent imaging of a black hole with the Event Horizon Telescope (EHT) Collaboration, and the critical need for representation in science.

Black Hole Astrophysics w/ Feryal Özel December 19, 2022

As the home of prominent research universities like Georgia Tech, medical schools and the Centers for Disease Control and Prevention, Georgia is uniquely positioned to be a leader in public health — not just for the U.S. but around the world. Bolstered by the Georgia Research Alliance (GRA), whose mission is to bring government, business and academia together to expand and further university research, the state is able to recruit the scientists who are making breakthroughs in major health issues. These include forecasting the next pandemic, developing new antibiotics, and tackling chronic health problems like high blood pressure. Marvin Whiteley, professor in the School of Biological Sciences, Bennie H. and Nelson D. Abell Chair in Molecular and Cellular Biology, and Georgia Research Alliance Eminent Scholar is interviewed about his research into the social behaviors of bacteria and how they can point the way to new treatments.

Pursuing Premier Public Health December 13, 2022

As the home of prominent research universities like Georgia Tech, medical schools and the Centers for Disease Control and Prevention, Georgia is uniquely positioned to be a leader in public health — not just for the U.S. but around the world. Bolstered by the Georgia Research Alliance (GRA), whose mission is to bring government, business and academia together to expand and further university research, the state is able to recruit the scientists who are making breakthroughs in major health issues. These include forecasting the next pandemic, developing new antibiotics, and tackling chronic health problems like high blood pressure. Marvin Whiteley, professor in the School of Biological Sciences, Bennie H. and Nelson D. Abell Chair in Molecular and Cellular Biology, and Georgia Research Alliance Eminent Scholar is interviewed about his research into the social behaviors of bacteria and how they can point the way to new treatments.

Pursuing Premier Public Health December 13, 2022

The Ocean Visions-U.N. Decade Collaborative Center for Ocean-Climate Solutions, which launched in November, is a partnership between the Georgia Aquarium, Georgia Tech, and the nonprofit Ocean Visions.The center leads and supports ocean-based climate solutions that mitigate and reverse the effects of climate change. Headquartered at the Georgia Aquarium, the center is part of the United Nations' Sustainable Development Goals to achieve by 2030. The center is also looking at ocean-based renewable energy technologies, and sustainable fisheries and aquaculture to produce low carbon food, just to name a few. Center officials hope to partner with local communities and universities throughout the state.

An international center focused on ocean-based climate solutions launched last month in Atlanta December 5, 2022

The Ocean Visions-U.N. Decade Collaborative Center for Ocean-Climate Solutions, which launched in November, is a partnership between the Georgia Aquarium, Georgia Tech, and the nonprofit Ocean Visions.The center leads and supports ocean-based climate solutions that mitigate and reverse the effects of climate change. Headquartered at the Georgia Aquarium, the center is part of the United Nations' Sustainable Development Goals to achieve by 2030. The center is also looking at ocean-based renewable energy technologies, and sustainable fisheries and aquaculture to produce low carbon food, just to name a few. Center officials hope to partner with local communities and universities throughout the state.

An international center focused on ocean-based climate solutions launched last month in Atlanta December 5, 2022

Scientists working at the ongoing Department of Energy’s (DOE) Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment use the site’s northern Minnesota bog as a laboratory. SPRUCE allowed scientists to warm the air and soil by zero to 9 degrees C above ambient temperatures to depths more than 2m below ground. This warming simulates the effects of climate change on the carbon cycle at the whole ecosystem scale over the long term. The research found that the production of the potent greenhouse gas methane increased at a faster rate than carbon dioxide in response to warming. The results indicate that carbon dioxide release and methane production are stimulated by plants‘ release of metabolites, chemicals that plants create for protection and other functions. The scientists included a team from Georgia Tech led by Joel Kostka, professor and associate chair of research for the School of Biological Sciences, with an adjunct appointment in the School of Earth and Atmospheric Sciences

Whole Ecosystem Warming Stimulates Methane Production from Plant Metabolites in Peatlands November 30, 2022

Scientists working at the ongoing Department of Energy’s (DOE) Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment use the site’s northern Minnesota bog as a laboratory. SPRUCE allowed scientists to warm the air and soil by zero to 9 degrees C above ambient temperatures to depths more than 2m below ground. This warming simulates the effects of climate change on the carbon cycle at the whole ecosystem scale over the long term. The research found that the production of the potent greenhouse gas methane increased at a faster rate than carbon dioxide in response to warming. The results indicate that carbon dioxide release and methane production are stimulated by plants‘ release of metabolites, chemicals that plants create for protection and other functions. The scientists included a team from Georgia Tech led by Joel Kostka, professor and associate chair of research for the School of Biological Sciences, with an adjunct appointment in the School of Earth and Atmospheric Sciences

Whole Ecosystem Warming Stimulates Methane Production from Plant Metabolites in Peatlands November 30, 2022

The Artemis 1 mission to the Moon, launched from Kennedy Space Center on Nov. 16, did not have astronauts on board. It did have what NASA is calling "moonikins" — dummies wearing special spacesuits that will measure data on vibration, acceleration, and cosmic radiation. Thomas Orlando, professor in the School of Chemistry and Biochemistry, and an adjunct professor in the School of Physics, will study that data. Orlando is also the principal investigator for Georgia Tech's REVEALS (Radiation Effects On Volatiles And Exploration Of Asteroids And Lunar Surfaces), which will help NASA design the next generation of spacesuits and astronaut habitats. 

How Artemis rocket launch will prepare astronauts to head back to moon November 19, 2022

On a Midwestern farm growing corn and beans, a tractor will soon spread 1,543 tons of rock dust over 140 acres. The goal: fighting climate change. Over the next two growing seasons, the dust — crushed basalt — is expected to capture 384 tons of carbon on the farm while helping crops grow. The farm is one of 14 that are working with Lithos, a new startup pioneering an unusual approach to carbon capture. Instead of pulling carbon dioxide from the air, when rain falls, it combines with atmospheric carbon dioxide to make it slightly acidic, and when the combination hits certain kinds of rocks, it causes a chemical reaction that slowly removes carbon dioxide from the atmosphere. Chris Reinhard, associate professor in the School of Earth and Atmospheric Sciences, is a Lithos cofounder. (This story is also covered in GeekWire and Carbon Herald.)

This US startup uses volcanic rock dust to capture carbon on farms November 18, 2022

On a Midwestern farm growing corn and beans, a tractor will soon spread 1,543 tons of rock dust over 140 acres. The goal: fighting climate change. Over the next two growing seasons, the dust — crushed basalt — is expected to capture 384 tons of carbon on the farm while helping crops grow. The farm is one of 14 that are working with Lithos, a new startup pioneering an unusual approach to carbon capture. Instead of pulling carbon dioxide from the air, when rain falls, it combines with atmospheric carbon dioxide to make it slightly acidic, and when the combination hits certain kinds of rocks, it causes a chemical reaction that slowly removes carbon dioxide from the atmosphere. Chris Reinhard, associate professor in the School of Earth and Atmospheric Sciences, is a Lithos cofounder. (This story is also covered in GeekWire and Carbon Herald.)

This US startup uses volcanic rock dust to capture carbon on farms November 18, 2022