To request a media interview, please reach out to experts using the faculty directories for each of our six schools, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts is also available to journalists upon request.
Experts in the News
A new paper published in the journal Science argues that traits that are highly variable and evolve quickly, over short time scales, are often the same ones that shape the direction of long-term evolution of new species. School of Biological Sciences Assistant Professor James Stroud, who was not involved in the research, says the study provides a fascinating insight: “As selection changes through time to chase new optima, the genetic variation of traits under selection may increase from this evolutionary back and forth,” he says. “This additive genetic variance, termed evolvability, is a window into evolution’s past.”
Nautilus May 28, 2024The Taklamakan and Gobi Desert (TGD) region has experienced a pronounced increase in summer precipitation, including high-impact extreme events, over recent decades. Despite identifying large-scale circulation changes as a key driver of the wetting trend, understanding the relative contributions of internal variability and external forcings remains limited. Researchers, including School of Earth and Atmospheric Sciences Professor Yi Deng, approached this problem by using a hierarchy of numerical simulations, complemented by diverse statistical analysis tools. The results offer strong evidence that the atmospheric internal variations primarily drive this observed trend. Specifically, recent changes in the North Atlantic Oscillation have redirected the storm track, leading to increased extratropical storms entering TGD and subsequently more precipitation. A clustering analysis further demonstrates that these linkages predominantly operate at the synoptic scale, with larger contributions from large precipitation events.
Nature Communications May 23, 2024Control of electrical doping is indispensable in any semiconductor device, and both efficient hole and electron doping are required for many devices. In organic semiconductors, however, electron doping has been essentially more problematic compared to hole doping because in general organic semiconductors have low electron affinities and require dopants with low ionization potentials that are often air-sensitive. In a recent study, a team of researchers, including Stephen Barlow of the School of Chemistry and Biochemistry and the Center for Organic Photonics and Electronics, adapted an efficient molecular doping method, so-called ion-exchange doping, to dope electrons in a polymeric semiconductor.
Communications Materials May 21, 2024Weather forecasters talk about wind shear a lot during hurricane season, but what exactly is it? School of Earth and Atmospheric Sciences Senior Academic Professional Zachary Handlos teaches meteorology in a part of the country that pays close attention to the Atlantic hurricane season. In this article, Handlos provides a quick look at wind shear, one of the key forces that can determine whether a storm will become a destructive hurricane. (This story also appeared at Scientific American, Down to Earth, and The Weather Network.)
The Conversation May 21, 2024In the vast stretches of Georgia's saltwater marshes, where the land whispers to the ocean, a silent yet profound battle is waged beneath the surface. It's a struggle for survival and resilience, where the unassuming cordgrass, Spartina alterniflora, emerges as an ecological champion. But not without the help of its unseen allies-the intricate microbial communities thriving within its roots. Recent studies by Georgia Tech researchers, including School of Biological Sciences Professor and Associate Chair of Research Joel Kostka, have unveiled the pivotal role these microbes play in not only sustaining the cordgrass but also in bolstering the health of the entire coastal ecosystem. These findings, published in Nature Communications, shed light on the complex interplay between plant and microbe, revealing a symbiotic relationship that is as delicate as it is powerful. (This also appeared at Mirage News and Phys.org.)
Nature World News May 16, 2024Evidence from the International Space Station suggests microbial populations are rapidly adapting to the spacecraft environment; however, the mechanism of this adaptation is not understood. Bacteriophages are prolific mediators of bacterial adaptation on Earth. In this study, researchers including School of Biological Sciences Ph.D. student Iris Irby, survey 245 genomes sequenced from bacterial strains isolated on the International Space Station for dormant (lysogenic) bacteriophages. The results correlate microbial adaptation in spaceflight to bacteriophage-encoded functions that may impact human health in spaceflight.
Nature Communications May 15, 2024Researchers at Georgia Tech analyzed the weakening of ocean currents and how it could affect ocean life. A report published by Science studied the reaction of ocean currents to climate change, resulting in a potential decline in biological activity and nutrients in the North Atlantic. Using empirical data led by Jean Lynch-Stieglitz, chair of the School of Earth and Atmospheric Sciences, the study observed the sediments at the Gulf Stream's origin. The region plays an important role in the North Atlantic's biological activity, particularly the ocean currents that could weaken due to greenhouse gas emissions and climate change. (This also appeared at Phys.org.)
Nature World News May 13, 2024Forecasters are predicting a busy Atlantic hurricane season. The projections point to a potential weather double-whammy, said Zachary Handlos, senior academic professional at the School of Earth and Atmospheric Sciences. “The forecasts are expecting a higher frequency of storms this year, potentially aligned with record-breaking years like 2020 and 2005,” he noted. “But then on top of that there's a high chance of a few major hurricanes that could be thrown in the mix of all the named storms.”
Thirty named storms formed in 2020. Fifteen Atlantic cyclones became hurricanes in 2005 including Katrina, which caused nearly $200 billion in damage and led to more than 1,800 deaths. Both seasons were influenced by La Niña patterns, which involve the cooling of tropical Pacific waters but lead to a reduction in vertical wind shear that acts as a brake against Atlantic hurricanes. This year, warming Atlantic waters and the expected arrival of a La Niña pattern are driving expectations for a hyperactive hurricane season. “The waters are already warmer than usual in the Atlantic, and warm water is a key ingredient for kind of starting off and forming hurricanes,” Handlos said. “If you mix that trend on top of the possible La Niña setup, it's just a potential recipe for disaster.”
Savannah Now May 13, 2024Despite being chock-full of hardcore science, 3 Body Problem, a television series released on 21 March by the streaming service Netflix, has been a hit with audiences. The story follows five young scientists who studied together at the University of Oxford, UK, as they grapple with mysterious deaths, particle-physics gone awry, and aliens called the San-Ti who have their sights set on Earth. But how much of the science in the sci-fi epic reflects reality, and how much is wishful thinking? To find out, Nature spoke to three real-world scientists, including School of Chemistry & Biochemistry professor Younan Xia.
Scientific American May 2, 2024In a recent paper in the Proceedings of the National Academy of Sciences, School of Biological Sciences Associate Professor William Ratcliff and Emma Bingham, student in the Interdisciplinary Graduate Program in Quantitative Biosciences, put forward a brand new idea, which they tested in a computational model. Bingham and Ratcliff suggest that the way prokaryotic and eukaryotic genomes respond to population size may make or break their chances of evolving multicellularity. It’s a fascinating hypothesis, and if further work bears it out, it could fundamentally change how scientists conceive of this transition and challenge a key assumption they make about evolutionary forces.
Quanta Magazine May 2, 2024We all know too well how easily things get dirty. Dust gathers, and stains appear, seemingly out of nowhere. That’s no exception for the Animal Kingdom, either. But for some of these critters, staying clean isn’t just a matter of being comfortable. It’s also a matter of survival. The question of how animals manage to stay squeaky clean is something that researchers, including David L. Hu of the Schools of Biological Sciences and Mechanical Engineering, dug into in 2015.
Discover Magazine May 1, 2024Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood. Here, the Molecular Transducers of Physical Activity Consortium – whose researchers include Regents' Professor and Vasser-Woolley Chair in Bioanalytical Chemistry Facundo Fernández – profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicusover eight weeks of endurance exercise training. The data and analyses presented in the study serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training.
Nature May 1, 2024- ‹ previous
- 9 of 46
- next ›