A School of Psychology Colloquium featuring School of Psychology Assistant Professor Kimberly French

Work and family are two core sources of personal identity, facilitating joy, accomplishment, and belonging. At the same time, work and family roles may conflict with one another, resulting in feelings of stress, strained relationships, and detrimental coping behaviors.

While substantial literature has been dedicated to understanding negative psychological effects of work-family conflict, it is unclear whether, how, or when experiences affect physiological functioning and health. Such a connection is imperative for understanding the scope and nature of work-family processes and establishing work and family experiences as social determinants of major societal health issues such as obesity and cardiovascular disease.

Kimberly French will explore metabolic and cardiovascular outcomes in relation to work demands and work-family conflict experiences. She will present a series of studies focusing on long-term and acute physiological reactions. The results have practical and theoretical implications for the nature and timing of connections between work, family, and physiology.

Reception to follow in the JS Coon 2nd Floor Atrium

Event Details

Date/Time:

A long time ago, in a city far, far away, a mathematician solved a puzzle, the solution of which made our modern, connected world possible. Georgia Tech's School of Music and School of Mathematics have teamed up with local Atlanta artists to create a performance combining contemporary dance, original music, and storytelling. Called The Seven  Bridges of Königsberg, the concert celebrates this history and aims to spark people’s curiosity and convey the wonder of mathematics.

The classic puzzle that inspired Leonhard Euler to found the fields of topology and graph theory (or network theory) asked the simple question: Is it possible to cross all of the seven bridges of the city of Königsberg exactly once, with no repetition or backtracking? 

Euler was not content with a yes-or-no answer. Instead he began to think about the nature of connectedness in a mathematical way, as it applies to all possible cities with any number of islands and bridges; as well as to networks of transportation, commerce, and communication; to the pathways by which diseases or ideas spread; and ultimately to our contemporary interconnected life.

The Seven Bridges of Königsberg was selected by a new program called Science in Vivo, funded by the Simons Foundation, to receive one of its inaugural 10 awards as an Experimental Site “exploring what is possible when science experiences for the public are integrated into existing cultural gatherings.” 

The debut performance on Sept. 13, 2018 will take place on the Georgia Tech campus along Atlantic Ave, where an installation of the Seven Bridges of Königsberg puzzle was constructed earlier this year.   

To tell about the foundation of graph theory, the Georgia Tech Symphony Orchestra will perform a new composition by composer Marshall Coats, while a math team and dancers interpret the story and some concepts about graphs, as choreographed by guest artist Kristel Tedesco.

This performance will be repeated at the Bailey Center in the Kennesaw State University on Sept. 23, 2018. Other versions of the show will take place at public locations around Atlanta and the Southeast region in September and October.

In addition to the spectacle, the audience will have opportunities to explore mathematical puzzles and games and to personally engage with the mathematicians and artists.

The Seven Bridges of Königsberg is a production of Mathematics in Motion, Inc. and the Georgia Tech Schools of Music and Mathematics, with financial support from the Georgia Tech College of Design, the Georgia Tech College of Sciences, the Georgia Tech Office of the Arts as one of the Creative Curriculum Initiatives, and Science in Vivo.

Event Schedule

11:00 AM Interactive exposition by Club Math

12:15 PM Remarks by School of Mathematics Chair and College of Design Dean Steven French 

12:20 PM Music and Dance Performance 

1:00 PM Interactive engagement with Club Math

Directions to Seven Bridges Plaza 

The Seven Bridges Plaza is along the Atlantic Drive Promenade, right next to the Howey Physics Building. 

By Georgia Tech Trolley: Get off at the intersection of Ferst Drive and Atlantic Drive. Walk toward the Einstein Statue, The Seven Bridges Plaza will be on the right, past the Howie Building. You can catch the Georgia Tech Trolley at the MARTA Midtown station. 

By private transportation: 

If you are coming from south of Atlanta:

  1. Take I-85 North to 10th Street/14th Street/Ga Tech (Exit No. 150)
  2. Take a left onto 10th Street at the light at the end of the ramp
  3. Go straight through 3 traffic lights
  4. Take a left onto State Street (the next light)
  5. Go through one stop sign
  6. The Howey Physics Building is the first building on the left. A Visitor Parking Lot is in front of the Building. 

If you are driving from the east or west:

  1. Take I-20 into the city.
  2. Exit North onto I-75/85.
  3. Take I-75/85 North to the ramp of 10th Street/14th Street/Ga Tech.(Exit 150)
  4. Take a left onto 10th Street at the light at the end of the ramp.
  5. Go straight through 3 traffic lights.
  6. Take a left onto State Street (the next light).
  7. Go through one stop sign.
  8. The Howey Physics Building is the first building on the left. A Visitor Parking Lot is in front of the building.

 

Event Details

Date/Time:

August 27, 2018 | Atlanta, GA

Episode 2 of ScienceMatters' Season 1 stars Jenny McGuire. The assistant professor in the School of Earth and Atmospheric Sciences and the School of Biological Sciences has a tough commute to her summer research site: An 80-foot drop into Wyoming’s deep, dark Natural Trap Cave. There she collects fossils that she hopes will yield clues about the impact of climate change on animal and human populations.

Follow her journey at sciencematters.gatech.edu.

Enter to win a prize by answering the episode's question:

What small four-legged animals mentioned in Episode 2 help Jenny McGuire collect bones from Natural Trap Cave?

Submit your entry by noon on Friday, Aug. 31, at sciencematters.gatech.edu. Answer and winner will be announced on Monday, Sept. 3.

Congratulations to Vineeth Aljapur, winner of Episode 1 quiz. Aljapur is a first-year student in the Georgia Tech Bioinformatics Graduate Program.  

August 27, 2018 | Atlanta, GA

As microorganisms evolve to resist antibiotics, the world risks running out of drugs to treat bacterial infections. One way to slow this trend is to find new modes of using existing drugs, even those now ineffective because of microbial resistance.

One strategy is based on the phenomenon of collateral sensitivity: When some microbes develop resistance to one antibiotic, they become hypersensitive to another. For example, when an Escherichia coli strain became indifferent to chloramphenicol, it also became highly vulnerable to polymyxin B. For this strain, chloramphenicol and polymyxin B form a collaterally sensitive pair.

Sometimes the drug pair exhibits mutual collateral sensitivity (MCS) for a pathogen: The pathogen’s evolution of resistance to drug A increases its sensitivity to drug B and vice versa.

Researchers have identified several MCS pairs for pathogens like E. coli and Pseudomonas aeruginosa. Some have proposed exploiting the phenomenon to treat infections by cycling through the drugs, A-B-A-B.

“This sounds very clever,” says Georgia Tech biomathematician Howard “Howie” Weiss. “Bbut what could prevent this scheme from working is the rapid emergence and ascent of a population of cells that are resistant to both antibiotics.”

The prospect is exciting, but no experiments have yet been performed to test efficacy.

 “This was a real team effort between a microbiologist and a biomathematician.”

With Stockholm University microbiologist Klas Udekwu, Weiss has tested the plausibility of such schemes, using a mathematical model that considers factors affecting efficacy. Applying treatment protocols consisting of pairs MCS antibiotics, they examined how fast multiply-resistant mutants would emerge. They reported results in Drug Design, Development and Therapy.

They found some treatments that did not produce multiply-resistant mutants for several weeks, for several months, and even indefinitely. That means some combinations of an MCS pair prevented further development of the bacteria’s resistance to either drug.

 “This was a real team effort between a microbiologist and a biomathematician,” Weiss says. “My job was to construct the model using a system of differential equations and very carefully simulate their solution using a computer.” 

The first experiment used low to moderate concentrations of antibiotics and daily cycling: drug A on day 1, drug B on day 2, drug A on day 3. At these drug levels, treatment failed. Resistant mutants rapidly developed and dominated.

Simulation results improved with higher drug concentrations. “We found that one-day cycling of certain antibiotics kept the double-resistant mutants in check for over two weeks, which would be sufficient to cure many infections,” Weiss says.

The simulations also showed that three-day cycling of antibiotics that only inhibit bacterial growth – not kill – would never result in double-resistant mutants. “This was striking,” Udekwu says, “but in line with ecological theory.”

Udekwu is now conducting in-vitro cycling experiments. The next step would likely be experiments in mice. “It is far too early for clinicians to think about this strategy,” he says, “other than to keep an ear out for it, perhaps in a Cochrane report someday. 

August 23, 2018 | Atlanta, GA

When dehydration strikes, part of the brain can swell, neural signaling can intensify, and doing monotonous tasks can get harder.

With the help of brain scans and a simple, repetitive task to test responsiveness, exercise physiologists at the Georgia Institute of Technology studied volunteer subjects who sweated a lot and did not hydrate. The fluid loss led most of the subjects to make more goofs on the task, and areas of participants’ brains showed conspicuous changes.

The researchers also found that even without dehydration, exertion and heat put a dent in test subjects’ performance, but water loss made the dent about twice as deep.

“We wanted to tease out whether exercise and heat stress alone have an impact on your cognitive function and study the effect of dehydration on top of that,” said Mindy Millard-Stafford, the study’s principal investigator and a professor in Georgia Tech’s School of Biological Sciences. “We found a two-step decline.”

Heat, strain, accident

The researchers hope that someday this kind of research will offer insights into how increased cognitive slipups in hot settings with strenuous labor and poor hydration may endanger occupational safety, especially around heavy machines or military hardware. The fuzzed cognition could also contribute to reduced performance in competitive sports.

“When I was just getting interested in this subject, my brother was doing an internship at a steel plant, where I visited him, and it was extremely hot,” said the study’s first author Matt Wittbrodt, a former graduate research assistant at Georgia Tech. “In addition, everyone had on layers of protective clothing. We want to figure out if we can help prevent accidents in those environments.”

Millard-Stafford and Wittbrodt, who is now a postdoctoral researcher at Emory University, published their study on Thursday, August 23, in the journal Physiological Reports. Their research was partly funded by The American College of Sports Medicine Foundation.

Brain ventricles expand

In the experiments, when participants exercised, sweated and drank water, fluid-filled spaces called ventricles in the center of their brains contracted. But with exertion plus dehydration, the ventricles did the opposite; they expanded.

Functional magnetic resonance imaging (fMRI) revealed the differences. Oddly, the ventricle expansion in dehydrated test subjects may not have had much to do with their deeper slumps in task performance.

“The structural changes were remarkably consistent across individuals,” said Millard-Stafford a past president of The American College of Sports Medicine. “But performance differences in the tasks could not be explained by changes in the size of those brain areas.”

Changes in neural firing patterns showed up during dehydration, too.

“The areas in the brain required for doing the task appeared to activate more intensely than before, and also, areas lit up that were not necessarily involved in completing the task,” Wittbrodt said. “We think the latter may be in response to the physiological state: the body signaling, ‘I’m dehydrated’.” 

Mind-numbing task

The task the subjects completed was mindless and repetitive.

For 20 straight minutes, they were expected to punch a button every time a yellow square appeared on a monitor. Sometimes the square appeared in a regular pattern, and sometimes it appeared randomly. The task was dull for a reason.

“It helped us to avoid the cognitive complexity behind elaborate tasks and strip cognition down to simple motor output,” Wittbrodt said. “It was designed to hit essential neural processing one would use to make straightforward, repetitive movements.”

Past studies have indicated that this kind of task reflects the neural processing involved in real-life motor functioning, especially in the repetition common in manual labor or military exercises. Such monotony can foster attention lapses that heat, strain, and fluid loss may exacerbate. 

Sweating for science

Thirteen volunteers performed the task on three separate occasions:

  • Once after just relaxing and staying hydrated.
  • Once after extended heat, exertion, and sweat but with drinking water during exercise.
  • And once with heat, exertion, and sweat but without drinking water.

Even after just relaxing, task performance gradually slipped as the 20 minutes crept by. But under the subsequent stressors, average overall performance ratcheted down. A few of the volunteers did perform the task stalwartly under all imposed conditions.

The subjects completed the task in air-conditioned rooms and after a break from strenuous activity. In a real-world scenario, in which heat and toil are unrelenting, performance may collapse even further.

Overhydration also bad 

Going forward, the researchers would like to know if hydrating with electrolyte drinks might mitigate performance slumps even better than water did.

“Blood plasma gets diluted with water replacement alone,” Millard-Stafford said. “If blood sodium -- plain old salt -- drops too much while water in the blood increases too much, that’s dangerous. It’s a condition known as water intoxication or hyponatremia.”

Ultra-endurance athletes who end up in the medical tent are sometimes suffering from dehydration but also sometimes from water intoxication. Just the right balance of water seems to be important for the brain.

Like this article? Subscribe to our email newsletter

Also READ: As We Get Parched, Cognition Can Sputter

Georgia Tech’s Michael Sawka and Lewis Wheaton, and J. C. Mizelle of East Carolina University contributed to this study. Research was partly funded by The American College of Sports Medicine Foundation’s C. V. Gisolfi Doctoral Student Research Grant. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of The American College of Sports Medicine.

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia  30332-0181  USA

Media relations assistance: Ben Brumfield (404) 660-1408, ben.brumfield@comm.gatech.edu

Writer: Ben Brumfield

August 22, 2018 | Atlanta, GA

More than an eon ago, the sun shone dimmer than it does today, but the Earth stayed warm due to a strong greenhouse gas effect, geoscience theory holds. Astronomer Carl Sagan coined this “the Faint Young Sun Paradox,” and for decades, researchers have searched for the right balance of atmospheric gases that could have kept early Earth cozy.

new study led by the Georgia Institute of Technology suggests that nitrous oxide, known for its use as the dental sedative laughing gas, may have played a significant role.

The research team carried out experiments and atmospheric computer modeling that in detail substantiated an existing hypothesis about the presence of nitrous oxide (N2O), a powerful greenhouse gas, in the ancient atmosphere. Established research has already pointed to high levels of carbon dioxide and methane, but they may not have been plentiful enough to sufficiently keep the globe warm without the help of N2O.

Jennifer Glass, an assistant professor at Georgia Tech, and Chloe Stanton, formerly an undergraduate research assistant in the Glass lab at Georgia Tech, published the study in the journal Geobiology on Wednesday, August 22, 2018. Their work was funded by the NASA Astrobiology Institute. Stanton is now a graduate research assistant at the Pennsylvania State University.

No ‘boring billion’

The study focused on the middle of the Proterozoic Eon, over a billion years ago. The proliferation of complex life was still a few hundred million years out, and the pace of our planet’s evolution probably appeared deceptively slow.

“People in our field often refer to this middle chapter in Earth’s history roughly 1.8 to 0.8 billion years ago as the ‘boring billion’ because we classically think of it as a very stable period,” said Stanton, the study’s first author. “But there were many important processes affecting ocean and atmospheric chemistry during this time.”

Chemistry in mid-Proterozoic ocean was heavily influenced by abundant soluble ferrous iron (Fe2+) in oxygen-free deep waters.

Ancient iron key

“The ocean chemistry was completely different back then,” said Glass, the study’s principal investigator. “Today’s oceans are well-oxygenated, so iron rapidly rusts and drops out of solution. Oxygen was low in Proterozoic oceans, so they were filled with ferrous iron, which is highly reactive.”

In lab experiments, Stanton found that Fe2+ in seawater reacts rapidly with nitrogen molecules, especially nitric oxide, to yield nitrous oxide in a process called chemodenitrification. This nitrous oxide (N2O) can then bubble up into the atmosphere.

When Stanton plugged the higher fluxes of nitrous oxide into the atmospheric model, the results showed that nitrous oxide could have reached ten times today’s levels if mid-Proterozoic oxygen concentrations were 10 percent of those today. This higher nitrous oxide would have provided an extra boost of global warming under the Faint Young Sun.

Breathing laughing gas

Nitrous oxide could have also been what some ancient life breathed.

Even today, some microbes can breathe nitrous oxide when oxygen is low. There are many similarities between the enzymes that microbes use to breathe nitric and nitrous oxides and enzymes used to breathe oxygen. Previous studies have suggested that the latter evolved from the former two. 

The Georgia Tech model provides a plentiful source of nitrous oxide in ancient iron-rich seas for this evolutionary scenario. And prior to the Proterozoic, when oxygen was extremely low, early aquatic microbes could have already been breathing nitrous oxide.

“It’s quite possible that life was breathing laughing gas long before it began breathing oxygen,” Glass said. “Chemodenitrification might have supplied microbes with a steady source of it.”

Also READ: Cold Suns, Warm Exoplanets, and Methane Blankets

Like this article? Subscribe to our email newsletter

The paper was co-authored by Chris Reinhard of Georgia Tech, James Kasting of the Pennsylvania State University, Nathaniel Ostrom and Joshua Haslun of Michigan State University, and Timothy Lyons of the University of California Riverside. The research was funded by grant NNA15BB03A from the NASA Astrobiology Institute. Findings, opinions, and conclusions are those of the authors and not necessarily of the NASA Astrobiology Program.

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia  30332-0181  USA

Media relations assistance: Ben Brumfield (404) 660-1408, ben.brumfield@comm.gatech.edu

Writer: Ben Brumfield

Public nights at the Georgia Tech Observatory are back for 2018-2019! The observatory will be open one Thursday each month for people to observe various celestial bodies. A talk will be given about thirty minutes after the Public Night begins.

Series Schedule

Sep.20, 8-10:30  Moon, Saturn, Mars

Oct.18, 7:30-10  Moon, Mars

Nov.15, 7-9  Moon, Mars

Dec.13, 7-9  Moon, Mars

Jan.17, 7-9  Moon, Orion Nebula

Feb.14, 7-9  Moon, Orion Nebula

March 14, 8-10:30  Moon, Orion Nebula

Apr.11, 8:30-11  Moon, Star Cluster

If you park in a campus Visitor Lot, please pay the fee upon arrival.

The Public Night is contingent on clear weather. Potential closures and driving directions are on the official website

 

Event Details

Date/Time:

Public nights at the Georgia Tech Observatory are back for 2018-2019! The observatory will be open one Thursday each month for people to observe various celestial bodies. A talk will be given about thirty minutes after the Public Night begins.

Series Schedule

Sep.20, 8-10:30  Moon, Saturn, Mars

Oct.18, 7:30-10  Moon, Mars

Nov.15, 7-9  Moon, Mars

Dec.13, 7-9  Moon, Mars

Jan.17, 7-9  Moon, Orion Nebula

Feb.14, 7-9  Moon, Orion Nebula

March 14, 8-10:30  Moon, Orion Nebula

Apr.11, 8:30-11  Moon, Star Cluster

If you park in a campus Visitor Lot, please pay the fee upon arrival.

The Public Night is contingent on clear weather. Potential closures and driving directions are on the official website

 

Event Details

Date/Time:

Public Nights at the Georgia Tech Observatory are back for 2018-2019! The observatory will be open one Thursday each month for people to observe various celestial bodies. A talk will be given about thirty minutes after the Public Night begins.

Series Schedule

Sep.20, 8-10:30  Moon, Saturn, Mars

Oct.18, 7:30-10  Moon, Mars

Nov.15, 7-9  Moon, Mars

Dec.13, 7-9  Moon, Mars

Jan.17, 7-9  Moon, Orion Nebula

Feb.14, 7-9  Moon, Orion Nebula

March 14, 8-10:30  Moon, Orion Nebula

April11, 8:30-11  Moon, Star Cluster

If you park in a campus Visitor Lot, please pay the fee upon arrival.

The Public Night is contingent on clear weather. Potential closures and driving directions are on the official website

 

Event Details

Date/Time:

Public Nights at the Georgia Tech Observatory are back for 2018-2019! The observatory will be open one Thursday each month for people to observe various celestial bodies. A talk will be given about thirty minutes after the Public Night begins.

Series Schedule

Sep.20, 8-10:30  Moon, Saturn, Mars

Oct.18, 7:30-10  Moon, Mars

Nov.15, 7-9  Moon, Mars

Dec.13, 7-9  Moon, Mars

Jan.17, 7-9  Moon, Orion Nebula

Feb.14, 7-9  Moon, Orion Nebula

March 14, 8-10:30  Moon, Orion Nebula

April11, 8:30-11  Moon, Star Cluster

If you park in a campus Visitor Lot, please pay the fee upon arrival.

The Public Night is contingent on clear weather. Potential closures and driving directions are on the official website

 

Event Details

Date/Time:

Pages

Subscribe to College of Sciences | Georgia Institute of Technology | Atlanta, GA RSS